Binary Linear Compression for Multi-label Classification

نویسندگان

  • Wen-Ji Zhou
  • Yang Yu
  • Min-Ling Zhang
چکیده

In multi-label classification tasks, labels are commonly related with each other. It has been well recognized that utilizing label relationship is essential to multi-label learning. One way to utilizing label relationship is to map labels to a lower-dimensional space of uncorrelated labels, where the relationship could be encoded in the mapping. Previous linear mapping methods commonly result in regression subproblems in the lower-dimensional label space. In this paper, we disclose that mappings to a low-dimensional multi-label regression problem can be worse than mapping to a classification problem, since regression requires more complex model than classification. We then propose the binary linear compression (BILC) method that results in a binary label space, leading to classification subproblems. Experiments on several multi-label datasets show that, employing classification in the embedded space results in much simpler models than regression, leading to smaller structure risk. The proposed methods are also shown to be superior to some state-of-the-art approaches.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploiting Associations between Class Labels in Multi-label Classification

Multi-label classification has many applications in the text categorization, biology and medical diagnosis, in which multiple class labels can be assigned to each training instance simultaneously. As it is often the case that there are relationships between the labels, extracting the existing relationships between the labels and taking advantage of them during the training or prediction phases ...

متن کامل

Sample Compression for Multi-label Concept Classes

This paper studies labeled sample compression for multi-label concept classes. For a specific extension of the notion of VC-dimension to multi-label classes, we prove that every maximum multilabel class of dimension d has a sample compression scheme in which every sample is compressed to a subset of size at most d. We further show that every multi-label class of dimension 1 has a sample compres...

متن کامل

MLIFT: Enhancing Multi-label Classifier with Ensemble Feature Selection

Multi-label classification has gained significant attention during recent years, due to the increasing number of modern applications associated with multi-label data. Despite its short life, different approaches have been presented to solve the task of multi-label classification. LIFT is a multi-label classifier which utilizes a new strategy to multi-label learning by leveraging label-specific ...

متن کامل

Multi-topic Text Categorization Based on Ranking Approach

This paper is devoted to the multi-topic (multilabel) text classification problem. We propose two methods for reduction from ranking to the multi-label case. Unlike existing multi-label classification methods based on reduction from ranking problem, where the complex classification (threshold) function is being defined on the input feature space, in our approach we propose the construction of s...

متن کامل

Online Multi-Label Classification: A Label Compression Method

Many modern applications deal with multi-label data, such as functional categorizations of genes, image labeling and text categorization. Classification of such data with a large number of labels and latent dependencies among them is a challenging task, and it becomes even more challenging when the data is received online and in chunks. Many of the current multi-label classification methods req...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017